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J. Phys. A: Math. Gen. 19 (1986) 3665-3681. F'rinted in Great Britain 

Renormalisation group approach to Delaunay percolation 
networks with toplogical disorder 

Yoshio Yuget and Motoo Hori 
Department of Applied Physics, Faculty of Science, Tokyo, Institute of Technology, 
Meguroku, Tokyo, Japan 

Received 16 December 1985, in final form 18 February 1986 

Abstract. A renormalisation group approach is developed for Delaunay percolating systems 
in two and three dimensions using a scaling transformation for a finite lattice in real space. 
Considering various renormalisation transformations for two- and three-dimensional 
Delaunay lattices, we determine the behaviour of the probabilities under a scale transl'ornis- 
tion and calculate the fixed point and connectedness length exponent. The fixed points 
for the two-dimensional bond lattice and the three-dimensional site lattice are 0.3229 and 
0.1443 respectively, which are in excellent agreement with results of Monte Carlo simula- 
tions. The fixed point for the two-dimensional site lattice gives the value f for the critical 
percolation probability which is equal to the known result for a fully triangulated lattice. 

1. Introduction 

Percolation has been actively studied using both momentum space and position space 
renormalisation group approaches. A variety of position space renormalisation group 
approaches have been developed recently and some of them are highly promising for 
the study of critical percolation phenomena. 

In this paper we present a renormalisation group approach for calculating the 
critical behaviour of two- and three-dimensional Delaunay percolating systems using 
a scaling procedure in real space. For various regular lattices, the renormalisation 
study has thus far been carried out by several investigators who succeeded in obtaining 
precise estimates of the percolation threshold (Young and Stinchcombe 1975, Stinch- 
combe and Watson 1976, Reynolds et a1 1977, Yuge and Murase 1978, Yuge 1978, 
1979, Murase and Yuge 1979). There has, however, been no attempt to apply this 
approach to a Delaunay percolation system. 

The basic method is analogous to the decimation procedure discussed by Kadanoff 
and Houghton (1975) for a spirl system and applied to the critical behaviour for the 
percolation system by Young and Stinchcombe (1975). Our renormalisation method, 
which is based on the block formulation used in the derivation of the exact critical 
percolation probability for the triangular site lattice (Yuge 1978), is extended to 
Delaunay percolation networks in two and three dimensions and gives good results 
for the critical percolation probability p c  and for the connectedness length exponent v. 

In the following section we review a technique of constructing a two-dimensional 
Voronoi tessellation, easily extendable to three dimensions. In 0 3, we present some 
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principles of the real space renormalisation group approach to percolation and demon- 
strate an example of the bond problem on the Delaunay percolation network in two 
dimensions. Moreover, we present the renormalisation technique for the site problem 
of the Delaunay percolation network in two dimensions and the results obtained by 
the renormalisation group approach. We find that our results for the fixed point of 
the site problem agree with the conjecture of Sykes and Essam (1964) for the percolation 
threshold of the fully triangulated site lattices. We also present in § 4 the renormalisa- 
tion technique in three dimensions and the results for the fixed point and the connected- 
ness length exponent for the Delaunay site network. 

2. The Voronoi tessellations and Delaunay network 

The Voronoi tessellation, also known as the Wigner-Seitz cell construction, is a method 
for subdividing a continuum into random convex polytopes, i.e. polygons in two 
dimensions and polyhedra in three dimensions. The tessellation is carried out by first 
distributing particle points (for example ‘Poisson points’) randomly in space, and then 
drawing the perpendicular bisector of each line segment connecting each pair of points. 
Next we construct the minimum polytope about the point formed by the intersection 
of the bisectors. The Delaunay network, which is the dual of the Voronoi tessellation, 
is constructed by representing each polygon as a site, so that the line segments between 
neighbouring points become the bonds. For randomly distributed particle points, 
Delaunay networks are almost surely simplicial complexes, which consist of 
triangles(2~) or tetrahedra(3~) alone. An illustration of the two-dimensional example 
is given in figure 1 where the Delaunay triangles are shown by full lines and the 
corresponding Voronoi polygons are shown by broken lines. The coordination number 
z of a site in the network is equal to the number of edges of the polygons that surround 
the site. 

Figure 1. Voronoi polygons (broken line) and Delaunay triangles (full line) in two 
dimensions. 
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The percolation properties can be defined by the procedure of removing conducting 
elements (sites or bonds) at random from an infinitely large tessellation of conductors. 
In the network, a cluster is defined as an isolated finite group of conducting elements 
in electrical contact with one another. If we remove so many elements that the fraction 
p of conducting elements is below the percolation threshold p c ,  then the system behaves 
as an insulator. If the fraction p is above the percolation threshold, a continuous 
conducting path across the system exists for any infinite system. The examples to be 
considered here are the site and bond percolation networks in two dimensions (see 
Winterfeld et a1 1981, Jerauld et a1 1984a) and the site percolation network in three 
dimensions (see Jerauld eta1 1984b), in which an element (site or bond) of the Delaunay 
network is present (conducting) with probability p and absent (insulating) with proba- 
bility 1 - p .  

3. The renormalisation group approach to two-dimensional Delaunay networks 

We start by partitioning a lattice into cells which cover the lattice and preserve its 
topological structure. Our renormalisation procedure will be worked out for the bond 
problem and the site problem. We discuss the renormalisation transformations for the 
two problems separately. 

3.1. The bond problem 

We shall consider the simplest example in which twelve bonds on an original lattice 
scale into three bonds on a new lattice (figure 2). An illustration of the basic scaling 
procedure is provided in figures 2-5. The renormalisation procedure for the Delaunay 
bond network is carried out by first choosing any one polygon and its nearest-neighbour 
polygons. If the number of nearest-neighbour polygons are not sufficient, we choose 
next-nearest-neighbour polygons that are in contact with the two nearest-neighbour 
polygons. In the Voronoi tesselation, a twelve-bond cell consists of a group of nine 

( U )  ( b )  

Figure 2. Rescaling a lattice by forming cells out of groups of bonds. ( a )  Twelve-bond 
cells with four sites on the original Delaunay lattice enclosed by the broken line. ( b )  
Three-bond cells with one site on the new lattice enclosed by the broken line. In this 
example, the cell A on the original lattice scales into the cell A on the new lattice, and 
also cells B, C, and D scale into cells B', C', and D', respectively. 
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Figure 3. All the topologically distinct Delaunay graphs for a three-bond cell on the new 
lattice. Three-bond cells are sandwiched between two electrodes A and B. 

neighbouring polygons. Correspondingly, in the Delaunay network, a twelve-bond 
cell is a group of four sites connected by twelve bonds as shown in figure 2(a) .  Under 
this transformation, moreover, we choose the twelve-bond cell so that it can be fitted 
onto a frame of a square lattice by distortion. Next, the new lattice is obtained by 
removing three sites at random from the four sites in the cell and reconstructing the 
Delaunay network from the remaining sites (figure 2(6)). A three-bond cell on the 
new lattice is a group of one site and three bonds. There are only two topologically 
distinct graphs for a three-bond cell as shown in figure 3 .  

Thus, we have replaced the twelve bonds in each cell on the original lattice by the 
three bonds on the new lattice. Next we consider all topologically distinct graphs of 
the cell consisting of twelve bonds. The graphs of the twelve-bond cell shown in 
figure 4 are all topologically distinct graphs for that cell. There are some topologically 
distinct graphs with coordination number z = 5 - 7  associate with site C. For other 
coordination numbers, there is only one graph. Such graphs can be fitted onto a frame 
of the square lattice by distortion. These distorted graphs are sandwiched between 
two electrodes, as illustrated on the right of the original graph shown in figure 4. The 
bonds in the original graph are independently present (conducting) with probability 
p and absent (insulating) with probability 1 - p .  When an electric voltage is applied 
to the distorted graph sandwiched between two electrodes A and B in figure 5, the 
graph being conductive is defined as a graph in which a continuous conducting path 
from electrode A to electrode B exists. To the graph i with coordination number z in 
figure 4 are given the weighting factor A':') (the frequency of the graph i in graphs 
with the coordination number z ) ,  the probability R:')( p )  of the graph being conductive, 
and its coordination number z associated with the site C. The coordination number 
z in this transformation ranges from z = 4 to z = 8. The probability of finding sites 
with coordination number between 4 and 8 in the network is about 0.95, which can 
be estimated from the distribution of coordination numbers obtained by Monte Carlo 
simulations (Winterfeld et al 1981, Jerauld et al 1984a). 

Some of the configurations for one graph that arise in the position space renormalisa- 
tion transformation using a twelve-bond cell are shown in figure 5. In those diagrams, 
conducting bonds are represented with a full line; broken lines represent insulating 
bonds. 

The sum of the probability p, of those configurations is equal to the probability 
R(p)!&, of a graph being conductive, i.e. 

+165p8(1 - ~ ) ~ + 3 2 6 p ' ( 1 - p ) ~ + 4 3 2 p ~ ( l - p ) ~ + 3 7 2 p * ( l  - P ) ~  

+ 188p5(1 -p)'+49p3(1 - ~ ) ~ + 5 p ' ( l  - P ) ~ .  
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Figure 4. All the topologically distinct Delaunay graphs (full line) and Voronoi polygons 
for a twelve-bond cell are shown together with their weighting factor A'!'), the probability 
R : " ( p )  of a graph being conductive and its coordination number z associated with the 
site C. The distorted structure illustrated on the right is topologically equivalent to the 
original graph. 
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Figure 5. Some of the configurations of paths constructed between two electrodes A and 
B using a twelve-bond cell. Each bond shown as a full line and broken line represent 
bonds occupied with probability p and 1 - p ,  respectively. 

The probability K’(p’)LzLph of a graph on the new lattice is also expressed as 

R ’ ( p ’ ) ~ f ~ p h = ~ , p ~  = ~ ‘ ~ + 3 p ’ * ( 1  - p ‘ ) + p ’ ( l  -p ’ ) ’ .  (2) 

Similarly, we can obtain the probability Ri( p’) and R!’)( p) of graphs in figures 3 and 
4, considering the paths which contribute to the conductance of the cell (see appendix 
1). There is only one topologically distinct graph except for the coordination number 
z = 5-7 associated with site C. For the coordination number z = 5-7, there are some 
topologically distinct graphs which, we assume, occur with the same probability. When 
these graphs are not statistically isotropic, i.e. when the probability R:’)( p ) x  that the 
graph is horizontally conductive is inequal to the probability R!‘)( p ) ,  of its being 
vertically conductive, the probability R!”(p) of a given graph is defined as their 
arithmetic mean. In general, the probability R!”(p) that the graph is conductive is 
defined as the arithmetic mean of the probabilities of its being conductive vertically 
and horizontally. 

The twelve-bond cell scales into the three-bond cell; given that the bonds are 
independently occupied with probability p ,  then the occupation probability p ’  for the 
bonds of the new lattice may be derived from the renormalisation transformation 

and 

Here 9 { R (  p ) }  and %‘’{RI( p‘)} are the configurational averages for the probabilities 
that these graphs on the original and the new lattices are conductive, respectively; z 
is the coordination number associated with the site C of these graphs and @(z) is the 
distribution of coordination numbers. The summation Zz is taken over all states of 
coordination number z and the summation &ph is over all topologically distinct 
graphs of the coordination number 2. Furthermore, P E L p h  and P:r$h are concerned 
with the probability that the graph is found in graphs with the coordination number z. 

The configurational average 9 with which the ‘system’ (all topologically distinct 
graphs) becomes conductive is obtained by summing the probabilities It$’)( p )  of these 
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graphs: 
r 

The distribution of coordination numbers can be estimated from Monte Carlo simula- 
tions (Winterfeld et a1 1981, Jerauld et al 1984a). On the other hand, there are only 
two topologically distinct graphs for a three-bond cell on the new lattice and these 
graphs are shown in figure 3. The configurational average $2‘ of the system being 
conductive on the new lattice is given by 

2 
R’{R’(p’)}= x R I ( ~ ’ ) / 2 = ( 3 p ’ - p ’ ~ ) / 2 .  

i = l  
(7) 

Equation (3) serves as a simple though highly approximate position space renormalisa- 
tion group transformation with fixed points given by 

(8) 

From equations (6)-(8), we find two trivial fixed points at p* = 0 , l  and also a non-trivial 
fixed point at 

%’{ R‘( p*)} = % {  R( p*)}. 

p* = 0.3213. (9) 

A non-trivial fixed point gives the critical percolation probability pc for the finite cell. 
This result for p* is in excellent agreement with the result 0.321 *0.003 computed by 
the cluster moment of Dean (1963). The percolation threshold of the Delaunay bond 
network was recently determined to be pc = 0.3287 * 0.016 for a network of 10 000 sites 
(Winterfeld et a1 1984a). 

On the other hand, since our transformation rescales the lattice spacing by a factor 
of b, which is the change of the linear density of sites in the network, the average 
distance between any pair of points is smaller by a factor of b. Near the fixed point, 
we may linearise the renormalisation group equation (3) to obtain 

where 

A =  (11) 

The connectedness length exponent is given by 

U = In b /In A. (12) 
For the simplest example b=2 ,  from the scaling transformations (6) and (7) the 
eigenvalue and the connectedness length exponent are given by 

A = 1.5930 U = 1.4888. (13) 
The possibly exact value of v = $ (den Nijs 1979) is in fairly good agreement with this 
result in view of the small size of the cell. 
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3.2. The site problem 

Similar calculations may be carried out for the site problem using the corresponding 
renormalisation transformations. 

3.2,l. Four-site to one-site transformation. We shall consider the simplest example in 
the site problem in which four sites on the original lattice scale into one site on a new 
lattice. An illustration of the basic scaling procedure on this lattice is provided in 
figures 6 and 7. In the Voronoi tessellation, the renormalisation procedure for the 
Delaunay site network is carried out by choosing four neighbouring polygons. Corre- 
spondingly, in the network, we choose a four-site cell so that it can be fitted onto a 
frame of a square lattice by distortion. The four-site cell consistes of a group of four 
sites connected by five bonds as shown in figure 6(a).  Next, the new lattice is obtained 
by removing three sites at random from the four sites in the cell and reconstructing 
the Delaunay site network from the remaining sites (figure 6(  b ) ) .  

Thus, we have replaced the four sites in each cell on the original lattice by one site 
on the new lattice. Next we consider all topologically distinct graphs consisting of 
four sites. For the four-site cell, there is only one topologically distinct graph shown 
in figure 7. This graph is distorted and sandwiched between two electrodes as shown 
in the figure. 

i 
J 

Figure 6. Rescaling a lattice by forming cells out of groups of sites. ( a )  Four-site cells on 
the original Delaunay lattice (enclosed by the broken line) are shown with dots representing 
occupied sites with probability p .  ( b )  One-site cells on the new lattice (enclosed by the 
broken line) are shown with dots representing occupied with probability p ' .  In this example, 
the cell A on the original lattice scales into the cell A' on the new lattice, and also cells 
B, C and D scale into cells B', C' and D', respectively. 

PI 

Figure 7. Some of the configurations of paths conducting between two electrodes A and 
B. Four-site cell on the original lattice; each black site and each white site represent sites 
occupied with probability p and 1 - p ,  respectively. 
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The average probability B with which the system becomes conductive is obtained, 
taking account of paths which contribute to the conductance of the graph: 

9 { R (  p ) }  =c p j  =p4+4p3( 1 - p )  + 3p2(  1 - p ) ’ .  (14) 
j 

On the other hand, for the one-site cell with probability p ’ ,  the probability 9’ equals 
p ’ ,  so that 

% ’ { R ’ ( p ’ ) }  = p ’ .  (15 )  

From equations (3), (9), (14) and (15) ,  the fixed point value of p is found to be 

p *  = ;. (16) 

This result for p *  is in complete agreement with conjecture of Sykes and Essam (1964) 
for the percolation probability of a fully triangulated site lattice. The transformation 
has an eigenvalue A = 1.5 .  Thus the connectedness length exponent v is given by 

v = 1.7095. (17)  

This renormalisation procedure of ‘four-site to one-site transformation’ is equivalent 
to that of the triangular site lattice (Yuge 1978). 

3.2.2. Nine-site to one-site transformation. As in the bond problem, this renormalisation 
procedure for the Delaunay site network is carried out by first choosing any one 
polygon and its nearest-neighbour polygons. If the number of such nearest-neighbour 
polygons are not sufficient, we choose next nearest-neighbour polygons that are in 
contact with the two nearest-neighbour polygons. In the network, a nine-site cell is a 
group of nine sites connected by bonds. Under this transformation, moreover, we 
choose a nine-site cell so that it can be fitted onto a frame of a square lattice by 
distortion. Next, the new lattice is obtained by removing eight sites at random from 
the nine sites in the cell and reconstructing the Delaunay network from the remaining 
sites. 

Thus, we have replaced the nine sites in each cell on a original lattice by the one 
site on the new lattice. Next, we consider all topologically distinct graphs of the cell 
consisting of nine sites. The graphs of the nine-site cell shown in figure 8 are all 
topologically distinct graphs for that cell. There are two topologically distinct graphs 
with coordination number z = 6 associated with the central site C .  For other coordina- 
tion numbers, there is only one graph. Such graphs can be fitted onto the frame of 
the square lattice by distortion. These distorted graphs are sandwiched between two 
electrodes, as illustrated on the right of the original graph in figure 8. Sites in the 
original graph are independently present (conducting) with probability p .  To the graph 
i with coordination number z in figure 8 are given the weighing factor N ; ’ )  (the 
frequency of the graph i in graphs with the coordination number z ) ,  the probability 
R{’)( p )  of the graph being conductive and its coordination number z associated with 
the central site C .  The coordination number z in this transformation ranges from z = 4 
to z = 8. We can obtain the probability RI”( p )  of each graph in figure 8 considering 
the paths which contribute to the conductance of the graph (see appendix 2). There 
is only one topologically distinct graph except for the coordination number z = 6. For 
the coordination number z = 6, there are two topologically distinct graphs which, we 
assume, occur with the same probability. The probability R ! ” ( p )  that the graph is 
conductive is defined as the arithmetic mean of the probabilities of its being conductive 
vertically and horizontally. 
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Figure 8. All the topologically distinct Delaunay graphs (full  line) and the Voronoi polygons 
(broken line) for a nine-site cell are shown together with their weighting factor Nt') ,  the 
probability R;'' and its coordination number z. The distorted structure illustrated on the 
right is topologically equivalent to the original graph. 

The average probability 3 with which the system becomes conductive is obtained 
by summing the probabilities R:')( p )  of these graphs: 

On the other hand, for the one-site cell with probability p ' ,  the probability 92' equals 
p ' ,  so that 

%'{ R'( p ' ) }  = p ' .  (19) 

p *  =+. (20) 

From equations (3), (9), (18) and (19), the fixed point value of p is found to be 
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This result for p *  also is in complete agreement with the critical percolation probability 
of a fully triangulated site lattice. The transformation has an eigenvalue A = 1.9235. 
Thus the connectedness length exponent v is given by 

v = 1.6794. (21) 

3.2.3. Nine-site to four-site transformation. We shall consider a more intricate example 
in which nine sites on the original lattice scale into four sites on a new lattice. Similar 
to the nine-site to one-site transformation, this renormalisation procedure is carried 
out by first choosing any one polygon and its nearest-neighbour polygons. In the 
Delaunay network, a nine-site cell is a group of nine sites connected by bonds. Under 
this tranformation, moreover, we choose a nine-site cell so that it can be fitted onto a 
frame of a square lattice by distortion. Next, the new lattice is obtained by removing 
five sites at random from the nine sites in the cell and reconstructing the Delaunay 
network from the remaining sites. A four-site cell on the new lattice is a group of four 
sites connected by five bonds. There is only one topologically distinct four-site cell, 
which is equivalent to the graph shown in figure 7. 

Thus, we have replaced the nine sites in each cell on the original lattice by the four 
sites on the new lattice. Next we consider all topologically distinct graphs of the cell 
consisting of nine sites. Graphs of the nine-site cell which are all topologically distinct 
are equivalent to those shown in figure 8. 

The average probability 3 with which the system becomes conductive is obtained 
by summing the probabilities R:’)( p) of these graphs: 

On the othe hand, the probability 3’ of the system being conductive on the new lattice 
is given by 

3 ’ { R ’ ( p ’ ) }  = R‘(p ’ )=  3 ~ ” - 2 p ’ ~ .  (23) 

p* = 4. (24) 

From equations (3), (9), (22) and (23), the fixed point value of p is found to be 

This result for p* is again in complete agreement with the critical percolation probability 
of a fully triangulated site lattice. The transformation has an eigenvalue A = 1.9235. 
Thus the connectedness length exponent v is given by 

v = 1.6303. ( 2 5 )  

4. The three-dimensional Delaunay network 

We extend the previous procedure to the Delaunay percolation network in three 
dimensions. Our simple scaling procedure is defined by a renormalisation transforma- 
tion on a finite lattice sandwiched between two electrodes. We shall consider the 
simplest example where the eight-site cell on the original lattice scales into the one-site 
cell on a new lattice. In the same manner as in the two dimensional tessellation, the 
renormalisation procedure for the Delaunay site network in three dimensions is carried 
out by first choosing eight neighbouring polyhedra. Correspondingly, in the network, 
an eight-site cell consists of a group of four sites connected by nineteen bonds. Under 
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this transformation, moreover, we choose the eight-site cell so that it can be fitted onto 
a frame of a cubic lattice by distortion. Next, the new lattice is obtained by removing 
seven sites at random from the eight sites in the cell and reconstructing the Delaunay 
network from the remaining sites. 

Thus, we have replaced the eight sites in each cell on the original lattice by the 
one site on the new lattice. Next, we consider all topologically distinct graphs of the 
cell consisting of eight sites. The graphs of the eight-site cell shown in figure 9 are all 
topologically distinct graphs for that cell which, we assume, occur with the same 
probability in the tessellation. These graphs can be fitted onto the frame of the cubic 
lattice by distortion and subdivided by some tetrahedra. The sites in the original graph 
are independently present (conducting) with probability p .  To each graph i of figure 
9 are given the weighting factor N, (the frequency of the graph i) and the probability 
Ri( p )  of the graph being conductive. 

N, 1 1 1 

R ' f P i  R5 ip) 

1 1 

Figure 9. All the topologically distinct graphs are shown together with their weighting 
factor N ,  and the probabilitty R , ( p )  of the graph being conductive. 

We can obtain the probability R , ( p )  of each graph in figure 9, considering the 
paths which contribute to the conductance of the graph. Configurations of one graph 
that arise in the renormalisation transformation using an eight-site cell is shown in 
figure 10. In those diagrams, each conducting site has been connected with full lines; 
the white sites connected with broken lines represent insulating sites. The sum of the 
probability p j  of those configurations is equal to the probability of a graph being 
conductive vertically, i.e. 

RI(  p ) ,  = 2 p, = p 8 +  8p7(  1 - p )  +28p6(  1 - p ) *  
j 

+ 56p5( 1 +65p4( 1 - P ) ~ +  39p3( 1 - ~ ) ~ + 9 p ' (  1 - P ) ~ .  ( 2 6 )  
When the probability R , ( p ) ,  is the probability that the graph is vertically conductive 
and the probabilities R , ( p ) ,  and R , ( p ) ,  are the probabilities of its being conductive 
for the two horizontal directions, the probability R , ( p )  of a given graph is defined as 
their arithmetic mean (see appendix 3). 
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A 

P P 8  
9P2 I 1 - P 16 

Figure 10. Some of the configurations of paths conducting between two electrodes A and 
B using an eight-site cell in three dimensions. Each black site and each white site represent 
sites occupied with probability p and 1 - p ,  respectively. 

The average probability 9 with which the system becomes conductive is obtained 
by summing the probabilities Ri(  p )  of these graphs: 

For the one-site cell with probability p ’ ,  the probability 9’ equals p ’ ,  so that 

9’{ R’( p ’ ) }  = p’ .  (28) 

p* = 0.1446. (29) 

From equations (3), (9), (27) and (28), the fixed point value of p is found to be 

This result for p* is in excellent agreement with the result 0.1453 i0.002 computed by 
Monte Carlo simulations (Jerauld et a1 1984b). The percolation threshold, which is 
the so-called ‘critical volume fraction’, for a continuum percolation system was found 
to be V, = 0.15 * 0.01 by Scher and Zallen (1970). Moreover, the critical percolation 
probability of a continuum percolation model proposed by Webman et a1 (1976) is 
p c  = 0.145 * 0.05 from the limiting percolation threshold of a percolation model. 

The transformation has an eigenvalue A = 1.7211. Thus the connectedness length 
exponent v is given by 

v = 1.2766. (30) 

The connectedness length exponent was found to be v = 0.88 * 0.05 for the Delaunay 
network from Monte Carlo simulations (Jerauld et a1 1984b). 

5. Discussion and conclusion 

We have treated the various renormalisations for the critical behaviours of two- and 
three-dimensional percolating systems. The results for the eigenvalue A, the fixed point 
p*, and the connectedness length exponent v of all the transformations are summarised 
in table 1. 

A remarkable feature is that the non-trivial fixed point for the site problem on the 
Delaunay network in two dimensions is in complete agreement with the conjecture of 



3678 Y Yuge and M Hori 

Table 1. Results of renormalisation group approach to Delaunay networks. 

Number of elements 
Scale Connectedness Fixed 

Original New factor Eigenvalue length index point 

Two-dimensional bond lattice 
I2 3 2 1.5929 1.4888 0.3213 
Two-dimensional site lattice 

4 1 2 1, .5 1.7095 112 
9 1 3 1.9235 1.6794 112 
9 4 1.5 1.2824 1.6303 112 

Three-dimensional site lattice 
8 1 2 1.7211 1.2766 0.1446 

Sykes and Essam (1964) for the critical percolation probability of the fully triangulated 
site lattice ( p ,  = i). The fact that the fixed point or the critical point is located at 1 may 
be due to the self-matching property and the statistical isotropy (invariance under 7 ~ / 2  
rotation) of the lattices in consideration. Self-matching occurs not only on a regular 
triangular lattice but also on any infinite planar lattice, all of whose faces are triangular. 
Therefore, any random Delaunay network in two dimensions is statistically self- 
matching. Furthermore the self-matching occurs on any 'finite' planar lattice with 
triangular faces. 

Consider a finite planar lattice with linear size b which is statistically homogeneous; 
let %"(p; b )  be the probability that the finite lattice is vertically conductive and %H(p; b )  
be the probability of its being horizontally conductive. When the lattice is statistically 
isotropic, i.e. when it has the same percolation properties for the vertical and horizontal 
directions, we have 

%"(p;  b )  = 9tH(p; b )  = % ( p ;  b) .  (31) 

In the site percolation process on self-matching lattices, the event that the system is 
vertically (horizontally) conductive is equivalent to the event that its matching system 
with exchange of present and absent sites is horizontally (vertically) non-conductive. 
Therefore it holds that 

(32) %( p ;  b )  + %( 1 - p ;  b )  = 1 

which is reduced for p = $ to a known expression 

This relation shows that our renormalisation group transformation gives the fixed 
points value 4 for the two-dimensional Delaunay site network, provided that finite 
graphs chosen for renormalisation are statistically homogeneous, isotropic and sim- 
plicial. 

As for critical percolation probabilities, the non-rigorous reasoning of Sykes and 
Essam leads to the conclusion that the critical probabilities for the square lattice bond 
model, the triangular lattice site model and the site model on any fully triangulated 
graph are all equal to 1. Recently, Kesten (1980, 1982) and Russo (1981, 1982) have 
rigorously verified this conjectured value for the square lattice bond model and the 
triangular lattice site model. Furthermore, Kesten (1982) has proved that p c  = 5 for 
the site model on a fully triangulated periodic planar graph with one symmetry axis. 
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However, counterexamples have been constructed by Van den Berg (1981) and Wierman 
(1984) against the conjecture that any fully triangulated graph has a common critical 
value i. Note that these counterexamples are neither homogeneous nor periodic. 

In Kesten’s argument it is demonstrated that three critical probabilities defined in 
different manners (the infinite cluster size critical probability, the mean cluster size 
critical probability and the sponge critical probability) are equal to one another. This 
implies that the limit of 92( p ;  b )  as b + CO obeys a step function such that 

where p c  corresponds to the sponge critical probability. Also for statistically 
homogeneous, isotropic and simplicial graphs, we assume that the limit 9. ( p ;  03) has 
the same form as (34) or simply assume that % ( p ;  CO) has only one point of discon- 
tinuity. According to (32), then, the point of discontinuity of 3( p ;  CO) should coincide 
with that of 1 - 3 ( 1  - p ;  m). Hence it follows immediately that 

P c = i  (35) 

for any two-dimensional Delaunay network which is statistical homogeneous, isotropic 
and simplicial. Thus we conclude that in this case the fixed point of the renormalisation 
transformations and the critical percolation probability have the same value i. 

In  short, the percolation threshold of networks depends on the distribution of 
coordination numbers and the geometrical structure of tessellations. The bond threshold 
of the Delaunay network in two dimensions is slightly lower than that of the triangular 
lattice. The site percolation threshold of the Delaunay and triangular networks are 
exactly the same. In three dimensions, the site percolation threshold of the Delaunay 
networks are lower than that of all types of regular lattices. 

The connectedness length exponent is independent of the lattice type both in the 
site and bond problems. This supports the hypothesis of super-universality that the 
exponent depends only on the dimensionality. Up to now, no value has been known 
for the connectedness length exponent for the Delaunay network in two dimensions. 
Estimates of v for various regular lattices are found in the literature: v = 1.35 f 0.03 
from a Monte Carlo simulation (Kertisz et a1 1982), v = 1.333 f 0.002 from the Potts 
model (Blote et a1 1981), v = 1.33 f0.07 (Vicsek and Kertksz 1981) and v = 1.3541 0.015 
(Reynolds et a1 1978) from Monte Carlo renormalisation, and v = 1.330-1.332 on the 
site and bond lattices from the phenomenological renormalisation (Derrida and De 
Seze 1982). The estimates are in fairly good agreement with our results on the site 
and the bond Delaunay networks in view of the small size of cell. In three dimensions, 
the connectedness length exponent is calculated as v = 0.88 1 0.05 for the Delaunay 
network from Monte Carlo simulations (Jerauld et a1 1984b). Heermann and Stauffer 
(1981) found U = 0.89 f 0.01 for regular lattices through Monte Carlo simulations. The 
best estimate of the exponent v in three dimensions is v = 0.88 1 0.02 as found by 
Gaunt and Sykes (1983) using series expansions. The connectedness length exponents 
of the Delaunay network agree with those of regular networks obtained by our 
renormalisation procedure (Yuge and Murase 1978, Yuge 1978, 1979, Murase and 
Yuge 1979). 

Although the above arguments are limited to the Delaunay network, we mention 
that the present procedure for employing the renormalisation group approach seems 
to be very promising for the study of other networks with the distribution of coordination 
numbers. 
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Appendix 1 

R;(p’ )  = p  + p 2 - p 3  

R;(p’)=2p-p2 

R 1 7 ’ ( p )  = 5p2+4p3-24p4+8p5+34p6-34p7-3p8+20p9- 11p’0+2p’’ 

Ry’( p ) ,  = 7p2-p3 - 30p4+41p5 -3p6 - 35p7+ 33p8- 13p9+ 2p’O 

R y ’ ( p ) ,  =6p2+3p3-35p4+40p5+6p6-45p7+38p8- 14p9+2p’0 

R p ’ ( p )  = 5p2+6p3-36p4+34p5+ 15p6-50p7+39p8- 14p9+2p10 

R i 6 ’ ( p )  =4p2+6p3-21p4-3p5+42p6-30p7- 12p8+25p9- 12p10+2p” 

R y ’ ( p )  =6p2+3p3-35p4+40ps+6p6-45p7+38p8- 14p9-2p’0 

R i 6 ’ ( p ) ,  =6p2+3p3-33p4+31p5+22p6-59p7+44p8- 15p9+2p1O 

RY’(p) ,  = 5p2+6p3-36p4+34ps+ 15p6--50p7+39p8- 14p9+2pI0 

R&6’(p), = 6p2+4p3-34p4+20p5+58p6- 1O8p7+79p8-28p9+4p’O 

R&6’( p ) v  = 4p2+6p3 - 21p4 - 3p5+42p6 - 30p7 - 12p8+25p9- 12pI0+ 2p” 

R\5’(p)  =5p2+6p3-29p4-p5+87p6- 128p7+86p8-29p9+4pIo 

Ri5’( p)  = 6p2 + 3p3 - 33p4 + 31p5 + 22p6 - 59p7 + 44p8 - 15p9 + 2p’O 

Ri5’( p ) ,  = 5 p 2  + 2p3 - 1 4p4 - 1 Op5 + 44p6 - 24p7 - 2 1 p - 2 1 p + 30p lo  + 2p1’ 

R y ’ ( p ) ,  = 5p2+6p3-29p4-p5+87p6- 128p7+86p8-29p9+4p’0 

R(,4)(p)=6p2+2p3-22p4- 10p5+98p6- 138p7+91p8-30p9+4p’o. 

Appendix 2 

R‘,6’( p )  = 8 p 3  - 6p4 - 6ps + 12p7 - 9p8 + 2p9 

R Y ’ ( p ) ,  =7p3-3p4- 10p5+5p6+6p7-5p8+p9 

Ri6’( p ) ,  = 9p3 - 8p4 - 8 p 5  + 9p6 + 2p7 - 4p8 + p 9  

Ry’( p )  = 9p3 - 1 lp4+ 3p5 - 7p6 + 14p7 - 9p8 + 2p9 
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